RISK MANAGEMENT

Process

Risk Management begins at the estimating stage of the project, prior to task inception, and continues throughout the SDLC. Any assumptions made in the development of a plan or schedule should be considered for documentation as a risk.  In addition, outside influences that may have an impact on the team's ability to deliver should be included in the Project's Risk Matrix. 

The Project Risk Matrix is used as the basis for establishing agreements between the project team, the client, and other parts of the caBIG organization for Risk Management. The risk matrix is a "living document" and is reviewed during project team meetings, client meetings, and management meetings for any changes or additions.  High-priority project risks are formally reported to caBIG team leadership at the daily Pulse Point meetings. 

The Risk Management process is defined as a process with six phases:

1. Identify Risks

2. Analyze Risks

3. Prioritize Risks

4. Plan for Risks

5. Monitor and Resolve Risks

6. Report Risks

Identify Risks

The first phase associated with Risk Management is the identification of potential risks to the project.  Refer to Tables 6.1.1-1 and 6.1.1-2 for lists of general risks that have had an adverse effect on projects within the industry.  In general, only a few risks will apply for most projects so do not overextend resources trying to manage risks that have a low probability of occurring.  During the Identify Risks phase, the project may identify internal risks (i.e., internal staff issues) that should be captured in the risk matrix.  The project can differentiate these risks by specifying 'Internal Risk' in the Risk Area column of the risk matrix.

Table 6.1.1-1: Short List of Most Common Risks

	Potential Risk

	Feature creep

	Requirements or Developer gold-plating

	Shortchanged quality

	Overly optimistic schedules

	Inadequate design

	Personnel lacking necessary skills

	Contractor failure

	Friction between Developers and clients


Table 6.1.1-2: Extensive List of Risks by Category

	Category
	Potential Risk

	Schedule creation
	Schedule, resources, and product definition have all been dictated by the client or upper management and are not in balance.

	
	Schedule is optimistic rather than realistic (i.e., best case instead of expected case).

	
	Schedule omits necessary tasks.

	
	Schedule was based on the use of specific team members, but those team members were not available.

	
	Cannot build a product the size specified in the time allocated.

	
	Product is larger than estimated (e.g., SLOC, function points, percentage of previous project’s size).

	
	Re-estimation in response to schedule slips is overly optimistic or ignores project history.

	
	Excessive schedule pressure reduces productivity.

	
	Target date is moved up with no corresponding adjustment to the product scope or available resources.

	
	A delay in one task causes cascading delays in dependent tasks.

	
	Unfamiliar areas of the product take more time than expected to design and implement.

	Organization and management
	Project lacks an effective top-management sponsor.

	
	Project languishes too long in fuzzy front end.

	
	Layoffs and cutbacks reduce team capacity.

	
	Client or management insists on technical decisions that lengthen the schedule.

	
	Inefficient team structure reduces productivity.

	
	Management review/decision cycle is slower than expected.

	
	Budget cuts upset project plans.

	
	Management makes decisions that reduce the development team’s motivation.

	
	Non-technical, third-party tasks take longer than expected (e.g., budget approval, equipment purchase approval, legal reviews, security clearances).

	
	Project plans are abandoned under pressure, resulting in chaotic, inefficient development.

	Development environment
	Facilities are not available on time.

	
	Facilities are available but inadequate.

	
	Facilities are crowded, noisy, or disruptive.

	
	Development tools are not in place by the desired time.

	
	Development tools do not work as expected; Developers need time to create workarounds or to switch to new tools.

	
	Development tools are not chosen based on their technical merits and do not provide the planned productivity.

	
	Learning curve for new development tool is longer or steeper than expected.

	End-users
	End-user ultimately finds product to be unsatisfactory, requiring redesign and rework.

	
	End-user does not buy into the project and consequently does not provide needed support.

	
	End-user input is not solicited, so product ultimately fails to meet user expectations and must be reworked.

	Client
	Client review/decision cycles for plans, prototypes, and specifications are slower than expected.

	
	Client will not participate in review cycle for plans, prototypes, and specifications or is incapable of doing so, resulting in unstable requirements and time-consuming changes.

	
	Client communication time (e.g., time to answer requirements-clarification questions) is slower than expected.

	
	Client insists on technical decisions that lengthen the schedule.

	
	Client micro-manages the development process, resulting in slower progress than planned.

	
	Client-furnished components are a poor match for the product under development, resulting in extra design and integration work.

	
	Client-furnished components are poor quality, resulting in extra testing, design, and integration work and in extra client-relationship management.

	
	Client-mandated support tools and environments are incompatible, have poor performance, or have inadequate functionality, resulting in reduced productivity.

	
	Client will not accept the software as delivered even though it meets all specifications.

	Requirements
	Requirements are poorly defined and further definition expands the scope of the project.

	
	Vaguely specified areas of the product are more time-consuming than expected.

	Product
	Error-prone modules require more testing, design, and implementation work than expected.

	
	Unacceptably low quality requires more testing, design, and implementation work to correct than expected.

	
	Pushing the computer science state-of-the-art in one or more areas lengthen the schedule unpredictably.

	
	Development of the wrong software functions requires redesign and implementation.

	
	Development of the wrong user interface results in redesign and implementation.

	
	Development of extra software functions that are not required (i.e., gold-plating) extends the schedule.

	
	Meeting product’s size or speed constraints requires more time than expected, including time for redesign and re-implementation.

	
	Strict requirements for compatibility with existing system require more testing, design, and implementation than expected.

	
	Requirements for interfacing with other systems that are not under the project or team members' control result in unforeseen design, implementation, and testing.

	
	Requirement to operate under multiple operating systems takes longer to satisfy than expected.

	
	Operation in an unfamiliar or unproved software environment causes unforeseen problems.

	
	Operation in an unfamiliar or unproved hardware environment causes unforeseen problems.

	
	Development of a kind of component that is brand new to the organization takes longer than expected.

	
	Dependency on a technology that is still under development lengthens the schedule.

	External environment
	Product depends on government regulations, which change unexpectedly.

	
	Product depends on draft technical standards, which change unexpectedly.

	Personnel
	Hiring takes longer than expected.

	
	Task prerequisites (e.g., training, completion of other projects, acquisition of work permit) cannot be completed on time.

	
	Poor relationships between Developers and management slow decision-making and follow through.

	
	Team members do not buy into the project and consequently do not provide the level of performance needed.

	
	Low motivation and morale reduce productivity.

	
	Lack of needed specialization increases defects and rework.

	
	Personnel need extra time to learn unfamiliar software tools or environment.

	
	Personnel need extra time to learn unfamiliar hardware environment.

	
	Personnel need extra time to learn unfamiliar programming language.

	
	Contract personnel leave before the project is complete.

	
	Permanent employees leave before the project is complete.

	
	New development personnel are added late in the project and additional training and communications overhead reduce existing team members’ effectiveness.

	
	Team members do not work together efficiently.

	
	Conflicts between team members’ result in poor communication, poor design, interface errors, and extra rework.

	
	Problem team members are not removed from the team, damaging overall team motivation.

	
	The personnel most qualified to work on the project are not available for the project.

	
	The personnel most qualified to work on the project are available for the project but are not used for political or other reasons.

	
	Personnel with critical skills needed for the project cannot be found.

	
	Key personnel are available only part time.

	
	Not enough personnel are available for the project.

	
	Team members' assignments do not match their strengths.

	
	Personnel work slower than expected.

	
	Sabotage by project management results in inefficient scheduling and ineffective planning.

	
	Sabotage by technical personnel results in lost work or poor quality and requires rework.

	Design and implementation
	Overly simple design fails to address major issues and leads to redesign and re-implementation.

	
	Overly complicated design requires unnecessary and unproductive implementation overhead.

	
	Poor design leads to redesign and re-implementation.

	
	Use of unfamiliar methodology results in extra training time and in rework to fix first-time misuses of the methodology.

	
	Product is implemented in a low-level language (e.g., assembler) and productivity is lower than expected.

	
	Necessary functionality cannot be implemented using the selected code or class libraries; Developers must switch to new libraries or custom-build the necessary functionality.

	
	Code or class libraries have poor quality, causing extra testing, defect correction, and rework.

	
	Schedule savings from productivity enhancing tools are overestimated.

	
	Components developed separately cannot be integrated easily, requiring redesign and rework.

	Process
	Amount of paperwork results in slower progress than expected.

	
	Inaccurate progress tracking results in not knowing the project is behind schedule until late in the project.

	
	Upstream quality assurance activities are shortchanged, resulting in time consuming rework downstream.

	
	Inaccurate quality tracking results in not knowing about quality problems that affect the schedule until late in the project.

	
	Too little formality (i.e., lack of adherence to software policies and standards) results in miscommunications, quality problems, and rework.

	
	Too much formality (i.e., bureaucratic adherence to software policies and standards) results in unnecessary, time consuming overhead.

	
	Management-level progress reporting takes more Developer time than expected.

	
	Half-hearted Risk Management fails to detect major project risks.

	
	Software project Risk Management takes more time than expected.


Analyze Risks

During the Analyze Risk phase, the risk is validated through additional research, as necessary, and a ranking is assigned.  The ranking is defined as 'probability / impact' and is assigned values of high, medium, or low, both for the probability and the impact. (i.e. H/H, H/M, L/H)  Table 6.1.2-1 below provides guidelines for determining the appropriate ranking values.

Table 6.1.2-1: Probability / Impact Ranking Chart for Risk Matrix

Note:  General guidelines for selecting the appropriate ranking value are identified in italics.

	Impact

Probability
	HIGH

Significant impact to the project schedule
	MEDIUM

Some impacts to individual project deliverables with minimal impact to the overall schedule
	LOW

Minimal or no impact to project deliverables 

	HIGH

( > 75%)
	H/H

Mitigation/Contingency  Required
	H/M

Mitigation/Contingency Required
	H/L

Mitigation/Contingency 

Recommended

	MEDIUM

( 25 – 75% )


	M/H

Mitigation/Contingency Required
	M/M

Mitigation/Contingency Recommended
	M/L

Mitigation/Contingency Optional

	LOW

( < 25% )
	L/H

Mitigation/Contingency Recommended
	L/M

Mitigation/Contingency Optional
	L/L

Mitigation/Contingency Optional


Estimating the probability and impact can be very subjective.  Therefore, it is useful to involve experienced team members when assessing the risk ranking.  If necessary, hold a risk estimate review and build a clear team consensus on the project risks.

Prioritize Risks

During the Prioritize Risks phase, the risks are ordered by rankings, from the highest probability/impact to the lowest.  This puts the highest priority risks at the top of the matrix.

Plan for Risks

During the Plan for Risks phase, mitigation and contingency strategies are defined for all the high priority risks (i.e. H/H, H/M, M/H).  Mitigation and contingency plans may also be defined for the lower priority risks, if deemed appropriate by the Project Manager.  The defined mitigation activities are planned within the project schedule.  With respect to the risk example provided below, activities that should be reflected in the project schedule are preparation of training materials and training sessions.   

Risk Example
Risk Area – Staff Availability

Risk – The Lead Analyst, who is the only Subject Matter Expert for the financial system, will be available throughout the project, as needed.

Consequence – If the Lead Analyst is unavailable for a significant period of time, the project team may not be able to resolve production problems with the financial system in a timely manner.

Rank – L/H; There is a low probability that the Lead Analyst will be unavailable for a significant period of time.  If the risk is realized, the potential impact to the project is high due to the affect on production support activities.

Mitigation Strategy – The Lead Analyst will prepare training materials and cross-train team members in the financial system.  Activities that should be reflected in the project schedule include the preparation of training materials and the conducting of training sessions.

Contingency Strategy – If the Lead Analyst is unavailable for a significant period of time, the Project Manager will coordinate efforts to sub-contract a portion of the production support activities to the client's technical support team.

The Project Risk Matrix may not be sufficient for documenting the mitigation and contingency strategies for certain high priority or more sensitive risks.   If necessary, the risk matrix may reference a separate plan that details the mitigation and contingency strategies.  An example of a risk area that may require a separate plan is disaster recovery for a critical online system that is required to be available 24 hours a day / 7 days a week.  

Monitor and Resolve Risks

Risks are reviewed and discussed at all project team meetings, client meetings, and at Senior Management meetings, as appropriate.  In reviewing the project risks, changes in the risks defined for the project are addressed as follows:

· Risk is realized – The contingency strategy is implemented.  The Risk Matrix is updated to reflect current information regarding the risk area.  Risk information may be added to the Project's Action Item Log to be tracked to closure. 

· Changes to the status of an existing risk – The status of the risk is discussed and the matrix is revised.

· New risks are identified – Update the matrix accordingly.  Mitigation activities occur as defined within the project schedule.

Report Risks

Risks are formally reported to Senior Management during the daily Pulse Point meetings   







